
Reducing Faulty Jobs by Job Submission Verifier in Grid Engine

Misha Ahmadian
 Department of Computer Science

 Texas Tech University
 Lubbock, TX, USA

 misha.ahmadian@ttu.edu

Eric Rees
 High Performance Computing

Center
 Texas Tech University

 Lubbock, TX, USA
 eric.rees@ttu.edu

Yong Chen
 Department of Computer Science

 Texas Tech University
 Lubbock, TX, USA
 yong.chen@ttu.edu

Yu Zhuang
 Department of Computer Science

 Texas Tech University
 Lubbock, TX, USA
 yu.zhuang@ttu.edu

ABSTRACT
Grid Engine is a Distributed Resource Manager (DRM), that
manages the resources of distributed systems (such as Grid,
HPC, or Cloud systems) and executes designated jobs which
have requested to occupy or consume those resources. Grid
Engine applies scheduling policies to allocate resources for jobs
while simultaneously attempting to maintain optimal utilization
of all machines in the distributed system. However, due to the
complexity of Grid Engine’s job submission commands and
complicated resource management policies, the number of faulty
job submissions in data centers increases with the number of
jobs being submitted. To combat the increase in faulty jobs, Grid
Engine allows administrators to design and implement Job
Submission Verifiers (JSV) to verify jobs before they enter into
Grid Engine. In this paper, we will discuss a Job Submission
Verifier that was designed and implemented for Univa Grid
Engine, a commercial version of Grid Engine, and thoroughly
evaluated at the High Performance Computing Center of Texas
Tech University. Our newly developed JSV communicates with
Univa Grid Engine (UGE) components to verify whether a
submitted job should be accepted as is, or modified then
accepted, or rejected due to improper requests for resources. It
had a substantial positive impact on reducing the number of
faulty jobs submitted to UGE by far. For instance, it corrected
28.6% of job submissions and rejected 0.3% of total jobs from
September 2018 to February 2019, that may otherwise lead to
long or infinite waiting time in the job queue.

CCS CONCEPTS
• Computing methodologies~Parallel computing
methodologies • Computing methodologies~Distributed
computing methodologies

KEYWORDS
Job Submission Verifier, Grid Engine, Faulty Jobs

ACM Reference format:

Misha Ahmadian, Eric Rees, Yu Zhuang and Yong Chen. 2019. Reducing
Faulty Jobs by Job Submission Verifier in Grid Engine. In Proceedings of
ACM Practice & Experience in Advanced Research Computing Conference
2019 (PEARC’19), July 28-August 1, 2019, Chicago, IL, USA, 8 pages.
https://doi.org/10.1145/3332186.3338408

1 Introduction
The Distributed Resource Management (DRM) systems,

commonly called Job (or Workload) Schedulers, provide an
interactive interface for users to request specific resources on a
distributed system such as a high-performance computing (HPC)
cluster, a Grid, or a cloud system. Users submit their requests to
the DRM system and wait until the amount of physical resources
such as CPU cores and memory, or virtual demanded resources
such as software licenses are acquired for their jobs. The DRM
system will then assign and execute the designated job on the
requested resources.

Distributed resource management systems, such as Univa
Grid Engine (UGE) [1] , Sun Grid Engine (SGE) [2], PBS Pro [3],
and Slurm [4], often force users to adopt different formats for
requesting resources based on the DRM’s command syntax,
design, and policies. Due to the complexity of DRMs’ job
submission commands and complicated resource management
policies, the number of faulty job submissions in data centers
increases with the number of jobs being submitted. In order to
reduce faulty job submissions, some DRM system, such as Grid
Engine, provide a programming interface for developers and
system administrators to design and implement a Job Submission

∗ Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

PEARC '19, July 28-August 1, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7227-5/19/07…$15.00
https://doi.org/10.1145/3332186.3338408

mailto:email@email.com

PEARC’19, July 2019, Chicago, IL USA M. Ahmadian et al.

2

Verifier (JSV) to control users’ job submissions by rejecting,
correcting, or accepting the jobs based on specific criteria before
the DRM receives those jobs.

In this paper, we introduce a research and development effort
of designing and implementing a job submission verifier within
the UGE job scheduler. We have also carried out extensive
evaluation tests on two large-scale, production HPC clusters,
Quanah and Hrothgar, located at the High Performance
Computing Center of Texas Tech University. Using this method,
we have observed a substantial reduction of the number of faulty
job submissions and completely wiped out jobs that would have
waited forever due to resource requirements that could never be
met. It also helps to train users by using a JSV and notifying
them of their mistakes in an informative way while significantly
reducing system administrators’ time and efforts by resolving
the faulty job submission issue automatically.

The contribution of this study is three-fold. First, we identify
and demonstrate faulty job submission issues commonly
observed in data centers, HPC systems, Grid or cloud systems.
Second, we propose two novel Job Submission Verifiers (JSV) to
address these issues, and we introduce the design and a
reference implementation conducted in this research. More
specifically, our proposed JSVs were developed in Perl, with
around 980 lines of codes for Quanah cluster and about 460 lines
of code for Hrothgar cluster. Third, we have conducted extensive
evaluation tests on two production HPC systems in our data
centers, and the evaluation results confirm that the proposed
JSVs have reduced the number of faulty job submissions
significantly. Such a reduction of faculty job submissions
translates to quick turnaround time for users, reduced time and
efforts required from system administrators’ attention, and
improved system utilization. We believe such a JSV can have an
impact on resource management of current and future
distributed computing infrastructures.

The rest of this paper is organized as follows. In Section II, we
will discuss the background and motivation of this study. In
Section III, we will explain the concept of JSV in detail, as well as
our design and architecture of JSVs for two production clusters.
We will also present our analysis and observations in this
section. In Section IV, we will discuss relevant work in this
space, and we will conclude this research study in Section V.

2 Background and Motivation

2.1 Job Schedulers and Univa Grid
Engine

Job scheduler is a critical component in distributed
computing systems and is often the most important factor that
determines the overall system efficiency and utilization.
Numerous job schedulers exist, such as UGE [1], SGE [2], PBS
Pro [3], and Slurm [4]. Most of these job schedulers, however,
bear very similar design and implementation philosophy. Thus,
in this study, we focus on UGE as it is a commonly-used and a
commercial version of job scheduler, Grid Engine. Our proposed
Job Submission Verifier provides a general design, which can be

applicable to any job schedulers, but the current implementation
was carried out specifically for the UGE scheduler.

As a branch of Sun Grid Engine (SGE) [2] and later Oracle
Grid Engine (OGE), Univa Grid Engine (UGE) [1] is a well-
known DRM system used by many academic and private
institutions worldwide. UGE uses a complex set of tunable
scheduling and resource allocation policies to allocate the
requested resources to jobs. In this context, a resource refers to
any physical or virtual computing asset such as CPU cores, GPU
cores, available memory, storage space, software license or any
static characteristic or attributes within the computing
environment. A job is defined as any process that can be
executed from a command-line interface or issued from a GUI
such as gateway systems. Sample jobs include executable
binaries, shell scripts, MPI (Message Passing Interface) jobs,
shared-memory applications such as OpenMP or Pthreads jobs,
distributed executable tasks such as MapReduce or TensorFlow
applications, or even interactive terminal sessions [5].

UGE maintains a queue of submitted jobs along with a list of
available and occupied resources. In order to allow
administrators to define how resources should be exploited and
how jobs should be prioritized, UGE provides a rule system
referred to as scheduling policies, similar to other job schedulers.
These policies provide a method for prioritizing jobs based on a
number of criteria including the job’s user, group, queue, project
or job type and allow the resource manager to govern the
resources in a fair yet predictable manner. These scheduling
policies along with the list of used, currently available and
projected resources allow UGE to decide which job should take
which resource or which job must give up the resources to make
them free for other jobs waiting on the list.

To assist better understanding of this study, we briefly
explain a list of common but critical terminologies used in UGE
policy definitions that we use throughout this paper [5]:

• Projects: a set of configuration properties in UGE,
which controls resource privileges and policies for a
group of users, jobs, or queues.

• Queue: maintains a group of hosts for running jobs on
those hosts when requested amount of resources are
available.

• Parallel Environment (PE): a runtime environment for
shared-memory or distributed-memory parallel
applications, in which users can request for a number
of required cores per job.

• Resource Quota Sets (RQS): a set of configuration
properties to apply limits for the consumption of
resources of any job requests.

2.2 Faulty Job Submissions
In this paper, we define faulty job submissions as belonging

to one of two categories: 1) jobs that enter into “Error State”
immediately after job submission and are shown as “Eqw” (or
Error-Queue-Wait) status in UGE jobs list. These faulty jobs may
emerge due to unusual behavior of the UGE scheduler or an
issue with the user’s executable script rather than deterministic

Reducing Faulty Jobs by Job Submission Verifier in Grid Engine PEARC’19, July 2019, Chicago, IL USA

3

manners such as application runtime error or bad input file; and
2) jobs that are incapable of ever being scheduled and thus go
into “queue wait” and stay in “qw” state forever. These faulty
jobs often occur either by accident or user ignorance of the
scheduler’s policies and design.

For instance, if computational nodes in a cluster consist of x
CPU cores per node, system administrators may desire to enforce
distributed-memory (MPI) jobs consume all the x CPU cores of
the allocated node(s). In this case, users are expected to request
(n * x) CPU cores for their MPI job submission, in which n is the
number of nodes that needs to be allocated to the job. However,
since UGE accepts any number for CPU cores in job submissions,
if user request for an amount of CPU cores which is not a
multiple of the number of CPU cores per node (x), UGE receives
the job submission, but will leave the job in waiting queue (qw)
forever due to the conflict with the design and policy.
Furthermore, in such a case, the UGE will fail to inform the user
of what caused her/his job to stay in ‘qw’ mode and has no
chance to obtain cluster resources.

This type of faulty job submissions, on average, requires 10
minutes of system administration work per job in order to
determine the cause of job failure, find an appropriate solution,
inform the user about her/his mistake, clear the faulty job, and
respond to the user’s feedback. Thanks to the more deterministic
behavior of jobs that are unable to schedule and the available
interface in UGE for verifying the jobs before entering the UGE,
it would be feasible to reduce or eliminate faulty job submissions
on HPC clusters. In this paper, we will introduce our proposed
Job Submission Verifiers (JSV) to address the challenges of faulty
jobs.

3 Job Submission Verifier (JSV)
Job Submission Verifier (JSV) is designed as a shell script or

executable binary that runs as a process and communicates with
Univa Grid Engine to verify jobs before being sent to the UGE
scheduler components [6]. During the job verification process,
the JSV manages to modify (Correct) the users’ requests based on
determinable criteria, drop (Reject) the potential faulty jobs with
a wrong and uncorrectable request format, or allow (Accept) the
job to be received by UGE components if it is clear of certain
mistakes.

JSV helps the system administrator to ensure that submitted
jobs are accurate and certain environment variables are passed
with jobs. If a user fails to submit a job correctly, then the JSV
prevents the job from being sent to the UGE master process and
instead informs the user of her/his mistakes by displaying a
proper message on the output. Users can also benefit from the
JSV and its notification messages not only to correct their
mistakes or missing parameters, but also learn from their
common faults in order to improve their future job submissions.
Univa Grid Engine supports two types of JSV interface: Client
JSV and Server JSV. The Client JSV can be defined by the system
administrator as well as normal users who can submit jobs to the
UGE. After verifying the job submission, each Client JSV process
gets terminated in order to eliminate direct overhead on the

cluster throughput. Server JSVs can be defined and executed
only by system administrators with the purpose of exchanging
information with users under a certain condition or logging
users’ job activities into a file. Since the Server JSV lives as long
as sge_qmaster (UGE master process) is running, it may degrade
the submission performance and cluster throughput [6]. In this
research, we focus on Client JSV in order to verify, correct or
reject job submissions on our HPC clusters based upon certain
criteria. We will use the JSV and Client JSV interchangeably for
the rest of this paper.

3.1 JSV Design for Quanah Cluster
3.1.1 Resources and Policies on QUANAH Cluster

The Quanah cluster is the newest and busiest HPC cluster at
Texas Tech University and was commissioned in 2017. Quanah
consists of 467 nodes, with a total of 16,812 cores (36 core per
node), 87.56 TB total RAM (192 GB per node), and Intel
OmniPath high throughput internal network (100 Gbps). UGE
manages the resource on Quanah cluster based on three main
policy levels: 1) the Parallel Environment (PE) provides a
runtime setting for shared-memory (sm) and distributed-memory
(mpi) applications respectively, 2) the (omni) queue maintains
instances of jobs and prioritize them in a fair-share fashion, and
3) (quanah), (xlquanah), and (hep) projects apply specific
resource policies to the jobs within the ‘omni’ queue. More
details about the PEs and Projects on Quanah cluster are shown
in Tables 1 and 2.

Table 1: Parallel Environments on Quanah

PE Policies

mpi • Must request for a multiple of 36 cores
• All MPI applications must define the ‘mpi’ PE

sm • Can request between 1 and 36 cores
• Slots are guaranteed to be in one node.

Table 2: Project Policies on Quanah

 quanah xlquanah hep

Max # of cores 16,182 144 720

default runtime 48 hours 72 hours 48 hours

Max runtime 48 hours 120 hours ∞

Allowed (PE)s ‘sm’, ‘mpi’ ‘sm’ ‘sm’, ‘mpi’

3.1.2 JSV Design and Reference Implementation
Univa Grid Engine is capable of handling almost all the resource
policy definitions and configurations for system administrators.
However, several details remain out of the scope of UGE’s
configuration settings such as: 1) assigning default runtime and
PE values to jobs based on different requested Project or Queue;

PEARC’19, July 2019, Chicago, IL USA M. Ahmadian et al.

4

2) ensuring a soft runtime (s_rt) is not greater than hard run
time (h_rt) for each submitted job; 3) confirming distributed-
memory (mpi) jobs request for CPU cores in multiples of a total
number of cores per node, and shared-memory (sm) jobs do not
request for more than total number of cores per node; 4)
ensuring the requested amount of memory does not exceed the
overall size of the memory across the requested nodes; and 5)
notifying users of their job submission rejection with descriptive
error messages.

In order to reduce the number of faulty jobs and notify users
of their faults, we have designed and implemented a JSV on
Quanah cluster in order to verify the job submissions based on
‘Resource time’, ‘Parallel Environment’, and ‘Memory’ requests
against each ‘Projects’ on Quanah.

If a user defines the job submission project as ‘quanah’, then
the JSV checks the requested runtime (h_rt, s_rt) parameters to
ensure they are not greater than 48 hours. If so, then the JSV
corrects the parameters and sets them to be 48 hours, which is
the maximum allowable runtime per job. Since the soft runtime
(s_rt) must not exceed the hard runtime (h_rt), the JSV corrects
the s_rt by setting the (s_rt = h_rt) if it surpasses the h_rt. The
JSV will also assign the default value of 48 hours to those jobs
that are missing the runtime parameters during the submission
and requesting for ‘quanah’ project. In case of entering the
runtime in any format other than HHH:MM:SS, the JSV will
reject the job submission and users will be notified to correct the
runtime format accordingly.

If PE parameter does not appear in job submission script (or
command-line), the JSV corrects the job submission by assigning
the default value of ‘sm’ (share-memory) PE along with one CPU
core to the job. The JSV also checks the number of requesting
CPU cores against the ‘sm’ and ‘mpi’ PE. If the number of
requesting CPU cores was not a multiple of 36 (total number of
CPU cores per node on Quanah) for ‘mpi’ jobs or exceeds 36 CPU
cores for ‘sm’ jobs, then the JSV rejects the job submission and
informs the user with a proper message.

All the compute nodes on Quanah provide 192GB RAM,
which means jobs cannot request more than 192GB memory per
each machine. Therefore, the JSV on Quanah rejects those ‘sm’
jobs which request for more than 192GB memory and those
‘mpi’ jobs that request size of memory greater than the total
memory size of all to-be-assigned nodes. If a user forgets to
define the memory size (h_vmem parameter in UGE), the JSV
will correct the job submission by setting the default memory
size of 5.3GB, which is the amount of memory per CPU core per
node.

3.2 JSV Design for Hrothgar Cluster
3.2.1 Resources and Policies on Hrothgar Cluster

The Hrothgar cluster at Texas Tech University consists of
three sub-clusters with the following configurations:

• Hrothgar (West): Commissioned in 2011 with 563
nodes, Xeon X5660 Westmere Processors, with a total

of 6,756 cores (12 cores/node), 13.19 TB total RAM (24
GB/node), and DDR 20 GB/second Infiniband fabric.

• Hrothgar (Ivy): Commissioned in 2014 consists of 96
nodes, Xeon E5-2670v2 Ivy Bridge Processors, with a
total of 1,920 cores (20 cores/node), 6.14TB Total RAM
(64 GB/node), and QDR 40 GB/second Infiniband
fabric.

• Hrothgar (Serial): Uses identical hardware as Hrothgar
West except it lacks an Infiniband fabric. These nodes
only support serial jobs and do not allow MPI jobs.

UGE on Hrothgar cluster defines two projects: ‘Community-
cluster’ and ‘hrothgar’. However, the JSV on this cluster only
supports the ‘hrothgar’ project, and because of that, we do not
explain other projects in this section.
In contrast to the resource allocation on the Quanah cluster,
which is mainly governed by policy definitions in each project,
the Hrothgar cluster handles the resource requests through
Queues’ policies for each sub-cluster on Hrothgar (i.e. ‘west’,
‘ivy’, and ‘serial’). In addition to that, each queue defines only
one type of PE for each sub-cluster (i.e. ‘west’ and ‘ivy’, and
‘sm’). Table 3 and 4 explain the PE and Queues’ configuration for
‘hrothgar’ project on Hrothgar cluster.

Table 3: Parallel Environments on Hrothgar

PE Policies

west Must request for a multiple of 12 cores

ivy Must request for a multiple of 20 cores

sm Can request between 1 to 12 cores.

Table 4: Queue Policies on Hrothgar

Queue Name west ivy serial

Runtime limit 48 hours 48 hours 120 hours

Allowed PE ‘west’ ‘ivy’ ‘sm’

cores per node 12 20 12

Max Memory size 24GB 64GB 48GB

3.2.2 JSV Design and Reference Implementation
The JSV on Hrothgar cluster only verifies the jobs without

correcting any parameters and notifies users about their
mistakes if their jobs get rejected. The JSV on Hrothgar cluster
verifies the PE and memory for any available queue when
‘hrothgar’ project is requested in job submissions. The JSV
confirms that if the queue parameter in job submissions requests
for either ‘west’, ‘ivy’, or ‘serial’, then the PE parameter should
be defined as ‘west’, ‘ivy’, or ‘sm’ corresponding to the selected
queue. If not, then the job submission will be rejected. For ‘west’

Reducing Faulty Jobs by Job Submission Verifier in Grid Engine PEARC’19, July 2019, Chicago, IL USA

5

and ‘ivy’ PE s, the JSV will ensure that the number of requested
CPU cores would be a multiple of 12 (for ‘west’) or 20 (for ‘ivy’)
and may not exceed the total of 12 CPU cores for ‘sm’ PE per
each job submission.

Since the total size of memory per node on ‘west’ queue
nodes is 24GB, and on ‘ivy’ queue nodes is 64GB, the JSV will
reject those job submissions which request for these types of
queue and a memory size greater than the total memory size of
all to-be-assigned nodes. For instance, if a job submission calls
for ‘hrothgar’ project, ‘west’ queue and ‘west’ PE along with 24
CPU cores (2 computational node), the maximum allowable
memory request for the job is 48GB, and any request for memory
size greater than 24G will be rejected by the JSV. The JSV also
ensures that the memory size will never exceed 48GB (maximum
memory size per node on ‘serial’ queue) in those job submissions
which request for ‘serial’ queue and ‘sm’ PE.

3.3 Analysis of JSVs
By using Perl as one of the recommended scripting languages

for JSVs to communicate efficiently with the UGE interface [6],
we have developed two Client JSVs for both Quanah and
Hrothgar clusters. Quanah and Hrothgar clusters maintain their
own JSV and each JSV runs as a distinct process for every
submitted job in order to: 1) verify the accuracy of the job, 2)
correct missing or wrong parameters, or 3) accept the job to be
sent to the UGE scheduler. JSVs also produce logs for every
submitted job including the submission status along with the
reason of correcting or rejecting the jobs if any occurs.

Figure 1 depicts the JSV activities on Hrothgar and Quanah
clusters for total of 442,061 job submission on Quanah and
52,608 job submissions on Hrothgar from Sept 10th, 2018 to Feb
10th, 2019. As we can observe from this figure, on Quanah
128,318 (29%) submitted jobs were corrected by JSV, 1,441 (0.3%)
jobs were blocked from entering the UGE scheduler and all
remaining jobs were accepted. Table 5 shows more details about
which parameters were corrected for users’ job submissions and
what reason caused some of the jobs to be rejected. The JSV on
Quanah cluster corrected 29% of the job submissions mostly by
setting a default memory size and runtime limit. In some cases,

users leave the PE undefined, which eventually made the JSV
choose the default PE value for their jobs. JSV also enabled the
‘Reservation’ mode for those jobs which requested for 360 cores
or more and did not ask for reservation during submission.

Table 5 also contains the failure reasons of the rejected jobs,
including: 1) Non-Existing Project Name: the requested project
name does is not a valid name, or the project name is undefined;
2) Non-Existing PE: the requested PE is not valid; 3) Incorrect
Number of Requested Slots: the requested number of slots (CPU
cores) exceeds 36 cores for ‘sm’ jobs or is not a multiple of 36 for
‘mpi’ jobs; 4) Incorrect Run Time Format: the requested runtime
is not in the format of ‘HHH:MM:SS’; and 5) Memory Size out of
Bound: the requested amount of memory for the job is too large
and exceeds the total memory size of the to-be-assigned nodes.

In the cases of 1), 2), and 4), UGE will prevent the job from
being scheduled even without the JSV. However, the output is
not informative enough to make users aware of their faults. In
this manner, the JSV is helpful for training users by rejecting
their job submissions and providing an informative message.
For cases 3) and 5), there is no feature in UGE other than JSV to
handle these issues. Without a JSV, those jobs will stay in ‘qw’
state forever since UGE does not see any problem with those
jobs and the scheduler would never find enough resources to
allocate them. Therefore, we can infer from Table 5 that the total
of 5.6% of the rejected jobs on Quanah (~81 jobs out of 1,441
rejected jobs) are deterministic faulty jobs that were caught by
JSV.

The result of JSV’s activity on Hrothgar cluster can be
observed in Figure 1 as well. Since the JSV on Hrothgar does not
correct any job, the data in Figure 1 only represents the results
of the 52,333 accepted jobs (99.5%) and 275 rejected jobs (0.5%).

Figure 1: JSV Activities on Hrothgar and Quanah clusters

09/10/2018 – 02/10/2019

Table 5: Job Submission Status on Quanah

09/10/2018 – 02/10/2019

PEARC’19, July 2019, Chicago, IL USA M. Ahmadian et al.

6

Table 6 describes the common reasons that the JSV rejects

user jobs on Hrothgar, including: 1) Non-Existing Queue Name:
the requested queue name is not a valid queue name; 2) Incorrect
PE: the selected PE is valid, but is not being supported by the
requested queue; 3) Incorrect Project Name: the project was not
defined by the user; 4) Undefined PE: the PE was not defined by
the user; 5) Incorrect Queue Name: the selected queue is valid
but does not match the requested project; 6) Incorrect number of
requested slots: the requested number of slots (CPU cores)
exceeds the total number of cores per node for ‘sm’ jobs, or is
not a multiple of 12 for west jobs or 20 for ivy jobs; and 7) Non-
Existing PE: the requested PE is not valid.

Similar to Quanah cluster, the rejected jobs in cases of 1), 3),
4), or 7), could be caught by the UGE without JSV. However,
UGE’s output messages after rejecting a job is not as informative
and helpful as our JSV. Moreover, UGE is not capable of
recognizing cases of 2), 5), and 6). For instance, if a user requests
a valid queue name (e.g. ‘west’) along with an unmatched PE
(e.g. ‘ivy’), the UGE will accept the job submission as long as
both queue name and PE are valid policy names. UGE will also
accept a job submission, in which a valid project name (e.g.
‘communitycluster’) and a valid queue name (e.g. ‘west’) are
defined, even though the requested queue does not work with
the requested project. Furthermore, there is no way in UGE other
than JSV to verify the number of requested cores against an
acceptable number of cores that can be requested for a particular
PE. In all these cases, submitted jobs could be stuck in ‘qw’ mode
forever. As shown in Table 6, we can see that a total of 40% of
the rejected jobs on Hrothgar (~110 jobs out of 275 rejected jobs)
are deterministic faulty jobs that UGE cannot catch them
without JSV.

3.4 Further Analysis of JSVs
Despite the considerably low number of rejected jobs

compared to the overall number of accepted jobs on both
Quanah and Hrothgar clusters from Sept 10th, 2018 to Feb 10th,
2019, we observed a noticeable improvement in job submissions.
This improvement was inferred from the evaluation of users’ job
submission behavior, and the impact of reducing faulty jobs on
system administrators’ workload time.

As mentioned earlier, the purpose of a JSV is not only to
reduce the ‘waiting-forever’ faulty jobs, but also to improve user
job submission behavior by informing them of their mistakes
and correcting missing parameters in their job submission
scripts. Figures 2 and 3 outline the percentage of accepted,
corrected, and rejected job submissions per month from Sept
10th, 2018 to Feb 10th, 2019. As it is shown in these figures, the
total number of submitted jobs to Quanah and Hrothgar clusters
in September is relatively low, since our collected data for this
month is limited to Sept 10th to Sept 30th, and also users’
activities during this month were relatively low. Similarly, our
data for February is limited to the first 10 days of this month. We
experienced a fair increase in corrected and rejected jobs from
September to October since JSVs were helping users understand
their mistakes in job submissions. From October to December we
observed more accepted job submissions with stable decrease in
correcting and rejecting the jobs. However, due to accepting a
large number of new users in January (at the beginning of new
academic semester), JSVs on both clusters started correcting and
rejecting more job submission for new users. Although the total
number of job submissions compared to September, a few new
users caused a significant increase in corrected and rejected job
submissions by submitting many jobs at the same time without
paying attention to the JSVs’ output messages.

Table 6: Job Submission Status on Hrothgar

09/10/2018 – 02/10/2019

Figure 2: Percentage of accepted and corrected job

submissions per month on both Quanah and Hrothgar

(09/10/2018 – 02/10/2019)

Reducing Faulty Jobs by Job Submission Verifier in Grid Engine PEARC’19, July 2019, Chicago, IL USA

7

4 Related Work
Failure of job submissions on large-scale systems such as

Grid [7] has been studied in several research efforts. Some job
failure analysis results show a considerable failure rate of 25% to
33% of all submitted jobs in Grid systems, and 5% to 8% of the job
failures occur after beginning execution on compute resources
[8]. However, few approaches such as fault-aware scheduling
policies and techniques can reduce the job submission failures
caused by unexpected resource failure or unavailability [9]. In
these techniques, proactive and predictive strategies might be
employed to analyze Grid workload traces and discover common
patterns of successful or failed jobs [10] or prevent job failure
during the execution time [11].

It is also possible to design and develop a tool or plugin as an
external component for DRMs and schedulers to manage job
submission failures. These tools can be a set of system level
script files and end user tools to correct configuration of the user
environment and applications [12], or a meta-scheduler that
integrates into the source code of Grid brokers (e.g. Condor [13])
to deploy a set of predefined standards and to coordinate users’
tasks and resource providers’ requirements [14]. For instance,
Job Submission Manager (JSM) [15] is a meta-scheduler and can
filter the arriving jobs based on parameters such as current
system load.

5 Conclusion
Distributed Resource Manager (DRM) systems such as Univa

Grid Engine are responsible for managing the distributed
resource allocation and policies on HPC clusters. However, in
some cases, they fail to give system administrators more
advanced control over verifying users’ job submissions and
blocking potential faulty jobs that may stay in ‘qw’ mode
forever. Therefore, the lack of enough control on job submission
confirmation and the absence of a builtin mechanism to
automate the detection of faulty jobs and inform users of their
errors may lead system administrators to leverage JSVs. Job

Submission Verifiers (JSVs) can help system administrators to
define extra resource policies, reject potential faulty jobs before
entering the scheduler based on specific criteria, and send a
message to users’ output in order to notify them of their job
submission mistakes.

In this paper, we have introduced our research and
development efforts in designing, implementing, and analyzing
JSVs for two production HPC clusters at Texas Tech University
(Quanah and Hrothgar), maintained by the High Performance
Computing Center (HPCC). We have described the details about
how UGE manages the resource allocation policies on these
clusters. We have explained the design and implementation of
JSVs for each of these clusters in order to reduce the number of
faulty jobs by finding and blocking faulty jobs, correcting some
of the missing parameters in users’ job submissions, and
informing users of their mistakes. We have also analyzed the
JSVs’ activities and performance results by explaining the data
that we have collected from the JSVs’ log file. The logs between
Sep 10th, 2018 to Feb 10th, 2019 show a significant decrease in
rejecting and correcting the job submissions on both clusters
before they received a large number of new users. Moreover, 81
rejected job submissions on Quanah cluster and 110 rejected job
submissions on Hrothgar cluster were potential ‘waiting-forever’
faulty jobs, which were caught by our JSV implementation. JSVs
were not only successful in rejecting the faulty jobs and
correcting some of the user’s job submissions’ parameters but
were also effective in training users on how to prepare their job
submission parameters correctly by informing them about their
mistakes in a meaningful way.

ACKNOWLEDGMENTS
The authors acknowledge the High Performance Computing
Center (HPCC) at Texas Tech University [16] in Lubbock for
providing HPC resources that have contributed to the research
results reported within this paper. We are also thankful to the
anonymous reviewers for their valuable feedback. This research
is supported in part by the National Science Foundation under
grant CNS-1338078, CCF-1718336, OAC-1835892, CNS-1817094.

REFERENCES
[1] Univa Grid Engine: http://www.univa.com/.

[2] Gentzsch, W. 2001. Sun Grid Engine: towards creating a compute power grid.

Proceedings First IEEE/ACM International Symposium on Cluster Computing

and the Grid (2001), 35–36.

[3] Nitzberg, B., Schopf, J.M. and Jones, J.P. 2004. PBS Pro: Grid Computing and

Scheduling Attributes. Grid Resource Management: State of the Art and

Future Trends. J. Nabrzyski, J.M. Schopf, and J. W\keglarz, eds. Springer US.

183–190.

[4] Yoo, A.B., Jette, M.A. and Grondona, M. 2003. SLURM: Simple Linux Utility

for Resource Management. Job Scheduling Strategies for Parallel Processing

(Berlin, Heidelberg, 2003), 44–60.

[5] Engineering, U. 2016. Grid Engine Introductory Guide. Univa Corporation.

[6] Engineering, U. 2016. Univa Grid Engine Documentation Univa Grid Engine

Administrator ’ s Guide. Univa Corporation.

[7] Foster, I., Kesselman, C. and Tuecke, S. 2001. The anatomy of the grid:

Enabling scalable virtual organizations. International Journal of High

Performance Computing Applications. 15, 3 (Aug. 2001), 200–222.

DOI:https://doi.org/10.1177/109434200101500302.

Figure 3: Percentage of rejected job submissions per

month on both Quanah and Hrothgar (09/10/2018 –

02/10/2019)

PEARC’19, July 2019, Chicago, IL USA M. Ahmadian et al.

8

[8] Li, H., Groep, D., Wolters, L. and Templon, J. 2006. Job Failure Analysis and

Its Implications in a Large-Scale Production Grid. 2006 Second IEEE

International Conference on e-Science and Grid Computing (e-Science’06)

(Dec. 2006), 27–27.

[9] Anglano, C., Brevik, J., Canonico, M., Nurmi, D. and Wolski, R. 2006. Fault-

aware scheduling for Bag-of-Tasks applications on Desktop Grids. 2006 7th

IEEE/ACM International Conference on Grid Computing (2006), 56–63.

[10] Fadishei, H., Saadatfar, H. and Deldari, H. 2009. Job failure prediction in grid

environment based on workload characteristics. 2009 14th International CSI

Computer Conference (Oct. 2009), 329–334.

[11] Benjamin Khoo, B.T. and Veeravalli, B. 2010. Pro-active failure handling

mechanisms for scheduling in grid computing environments. Journal of

Parallel and Distributed Computing. 70, 3 (Mar. 2010), 189–200.

DOI:https://doi.org/10.1016/j.jpdc.2009.11.003.

[12] Fenglian Xu, Eres, M.H., Baker, D.J. and Cox, S.J. 2004. Tools and support

for deploying applications on the grid. IEEE International Conference

onServices Computing, 2004. (SCC 2004). Proceedings. 2004 (Oct. 2004),

281–287.

[13] Litzkow, M.J., Livny, M. and Mutka, M.W. Condor-a hunter of idle

workstations. [1988] Proceedings. The 8th International Conference on

Distributed 104–111.

[14] Colling, D., McGough, A.S., Ma, T., Novov, V., Smith, J.M., Wallom, D. and

Xiong, X. 2010. Adding standards based job submission to a commodity Grid

broker. Proceedings - 10th IEEE International Conference on Computer and

Information Technology, CIT-2010, 7th IEEE International Conference on

Embedded Software and Systems, ICESS-2010, ScalCom-2010. Cit (2010),

1530–1535. DOI:https://doi.org/10.1109/CIT.2010.272.

[15] Saadatfar, H. and Deldari, H. 2014. A job submission manager for large-scale

distributed systems based on job futurity predictor. International Journal of

Grid and Utility Computing. 5, 1 (2014), 50.

DOI:https://doi.org/10.1504/IJGUC.2014.058252.

[16] High Performance Computing Center (HPCC) at Texas Tech University:

http://www.depts.ttu.edu/hpcc/.

